
A Study on the Reliability of Software Defined
Wireless Sensor Network

Yulin Lu, Xin Huang, Baichuan Huang, Weiwen Xu, Qian Zhang, Ruiyang Xu, Dawei Liu
Department of Computer Science and Software Engineering

Xi’an Jiaotong-Liverpool University

Suzhou, China

Email: Xin.Huang@xjtlu.edu.cn

Abstract—Software defined wireless sensor network is an
network defined for dynamic and secure control of smart devices.
It decouples the data plane and the control plane, allowing
administrators to reprogram the smart devices in the network
and backbone network devices based on users’ varying demands.
In this paper, a typical architecture of software defined wireless
sensor network is proposed. Continuous time Markov chain and
continuous stochastic logic are used for model checking the
reliability of this architecture, which lead to several interesting
findings.

I. INTRODUCTION

Wireless sensor networks (WSNs) provide a new interface
between humans and the physical world. They can help people
to monitor, track, and control the environment. WSNs normally
includes many sensor nodes. These nodes can be imaged
as tiny computers: they contain a wireless communications
device, an embedded processor, and a power source. They
collect and relay sensor data to various applications.

The growing popularity of sensor-based applications places
an increasing demand for dynamic and secure services from
WSNs. Software-defined wireless sensor network (SDWSN)
is a potential solution to address such challenges. First of
all, the network becomes programmable by software devices
without changing the hardware devices in lower layers. This
could isolate each application from others and realize dynamic
control over the virtual network. Secondly, the status of
network devices could be visible to network administrators,
which makes it more flexible to manage the network and
add or improve security schemes. Thus, this new networking
paradigm is considered as a promising technology.

However, before SDWSN can be widely deployed, its
reliability must be taken into consideration. First of all, the
problem with the centralized architecture of SDWSN is that
the whole network may collapse if the central controller fails.
In other words, the SDWSN controller is liable to a single
point of failure. Additionally, node failures and communication
failures are also important issues that influence the reliability.

In this paper, the SDWSN reliability is studied using
model checking techniques. So far, little research has been
undertaken using these techniques. The overall aim is to
study the influence factors, and find out potential improvement
strategies. The potential questions include:

• How can we formally model a SDWSN?

• Whether the following factors influence the SDWSN
reliability: the number of central controllers, the fail-
ure rate of controllers, the number of sensors, etc.

• If we can find practical strategies (i.e. adjusting these
factors mentioned above in a practically acceptable
range) to improve the SDWSN reliability?

Model checking SDWSN using probabilistic model in-
volves the following aspects: (i) Find out SDWSN fail-
ure types, and develop a formal model of SDWSN using
continuous-time Markov chains (CTMC); (ii) Implement the
model using the PRISM language, a simple, state-based lan-
guage; (iii) Verify properties (e.g. if certain factor influence the
SDWSN reliability) of the model using continuous stochastic
logic (CSL) and costs/rewards.

The main contributions of the work is that we show how
SDWSN can be formally modelled using CTMC. Also, we give
several interesting findings such as two controller with middle
reliability can be better than the combination of one controller
with high reliability and one controller with low reliability,
sensors are usually the main reason of SDWSN failure, and
sensor failure usually happens before other failures.

The remainder of the paper is organized as follows. Section
II explains software defined networking. Section III introduces
probabilistic model checking techniques. Section IV shows
how we formally model a typical SDWSN. Section V analyzes
the model checking results. Section VI provide related works.
Finally, the conclusion is made in Section VI.

II. SOFTWARE DEFINED NETWORKING

Software defined networking (SDN) is a new promising
networking paradigm [6], [9]. It provides a way to program-
matically control networks by decoupling the network control
and forwarding functions. The main components of the SDN
(shown in Figure 1) is listed below.

• SDN application: SDN applications are programs de-
signed for network management. Requests such as
monitoring and changing the network topology can be
sent from these programs. Some of these applications
can be built in controllers as plugins.

• SDN control plane: it includes SDN controllers that
offer a centralized view of the data forwarding plane,
and those manage the routers and switches according
to application requirements. A controller of the latter

2015 IEEE International Conference on Smart City/SocialCom/SustainCom together with DataCom 2015 and SC2 2015

978-1-5090-1893-2/15 $31.00 © 2015 IEEE

DOI 10.1109/SmartCity.2015.59

129

function, for example, may tackle a request of data
transmission by picking a certain switch and passing
the transmission instruction to it. It may also add,
change or delete the data flows under different condi-
tions.

• SDN data forwarding plane: it is the network that
transmits data for applications, following the rules
managed by the control plane.

• SDN southbound interfaces: they are interfaces be-
tween SDN controllers and the SDN data forwarding
plane. Typical protocols like OpenFlow exposes the
flow tables to the control plane and thus realizes the
centralized network management.

• SDN northbound interfaces: they are interfaces be-
tween SDN applications and SDN controllers. For
example, OpenDaylight and FloodLight provide the
Rest API to enable the communication between SDN
applications and controller plugins.

The SDN provides a flexible way to control the network,
which is ideal for today s applications with dynamic require-
ments. Some typical use cases are as follows. SDNs can
be used for data centers and cloud, because it offers better
resource utilization. It can also be used for enterprise, carrier
and service provider, since additional bandwidth or policy can
be easily added. Furthermore, the controller has a central view
of the whole network, thus SDN architecture can enhance
network security.

III. PROBABILISTIC MODEL CHECKING

Probabilistic model checking is a formal verification tech-
nique. Formal verification refers to the technique of verifying
whether a given model meets specific requirements such as
safety and robustness. The model as well as the requirements
are formulated into mathematical languages. These languages
are then passed as inputs to a model checking algorithm.

A. Continuous-Time Markov Chain

SDWSN will be modelled using continuous-time Markov
chains (CTMC). A CTMC [5] is a tuple C = (S, s̄, R, L)
where:

• S is a finite set of states;

• s̄ is the initial state;

• R : S × S is the transition rate matrix (a rate is
assigned to each pair of states);

• L is a labelling function.

One example CTMC is shown in Fig. 2. s0, s1 and s2 are
the states. s0 is the initial state. Empty and full are labels. The
transition rate matrix is(

0 1 0
2 1 0
0 2 0

)

Figure 2. A example of CTMC.

B. PRISM

PRISM [5] is a free and open-source probabilistic model
checker. It can be used to model and analyze systems us-
ing discrete-time Markov chains (DTMCs), continuous-time
Markov chains (CTMCs), probabilistic automata (PAs) and
probabilistic timed automata (PTAs). Prism has been deployed
in a broad spectrum of application domains such as secu-
rity protocols, wireless communication protocols, biological
systems, randomized distributed algorithms, game theories,
planning and synthesis, and many other areas.

Probabilistic models are specified by the Prism language,
a set of simple and state-based clauses. Module is the building
block. Each module mimics the states and behaviors of a
component of the actual systems. For example, in the SDWSN,
applications, controllers and network devices shall be viewed
as primitive modules. Additionally, each module has a set of
states denoted as variables and could perform a set of behaviors
denoted as commands. A command is a description about what
the module would do in a certain situation with a certain
probability. For a CTMC, a command could be depicted as
follows:

[] <guard> -> <rate> : <action>;

For example, consider the following Prism clause:

[] (x = 0)-> 0.5 : (x’ = x + 1)

This statement claims that x has a probability of 0.5 to increase
itself by one when x has a value 0. Thus, it could be intuitively
deduced that guard is a predicate over all variables that defined
in the module whereas action is a behavior that describes that
the transition of states of the module by changing the variable
values. The rates are always positive real numbers.

C. CSL, Costs and Rewards

We write specification of CTMCs using the logic CSL
(Continuous Stochastic Logic) [5]. For example,

P=? [! "down" U<=T "fail_cont"]

means that what is the probability of the event: there is no
failure until a controller failure happens in time T .

PRISM could analyze systems using ’Costs And Rewards’
[5]. It is real values relating to certain state or command within
a module. Consider the following example: The piece of Prism
statements assigns a reward of 100 whenever x has a value of
4 or 10 and assigns 3×x as a reward to x wherever the value
of x is between 5 and 20.

rewards
x = 4 : 3;

130

Figure 1. SDN architecture.

x = 10 : 3;
x > 5 & x < 20 : 3 * x;
endrewards

In addition, a state may satisfy several preconditions described
by guard clause. Then the reward assigned to this state would
be the sum of rewards corresponding to each guard clause.

IV. MODEL CHECKING SDWSN

This section describes a typical SDWSN architecture, and
presents a formal model for it. Also, implementation details
using PRISM are introduced.

A. Formal Model of a typical SDWSN

A typical SDWSN architecture is shown in Figure 3. The
data plane includes a network device layer and a host device
layer. While the routers in the upper layer focus on packet
forwarding, the sensors in the lower layer establish a network
among themselves. Note that since we do not consider the
failure rate of either southbound or northbound interfaces, they
are not illustrated in Figure 3.

In a formal model of the architecture, applications send re-
quests to the controller cluster containing two control devices,
which processes them and instructs routers to forward packets.

• Control devices: Each of the two controllers has a
certain failure rate. In SDWSN, the controller failure
refers to the condition when both of the two controllers
fail.

• Network devices: In our model, there are three routers
in the network device layer. Each of them has a certain
failure rate. When one router fails, all the sub nodes
of it will be moved to a waiting sequence. After
that happens, those in the waiting sequence will be
chosen as substitutions of the dead sensors connected
to other working routers. The network device layer is
considered to be down only when all routers are down.
It is worth to be mentioned that the failure rate of a
router is correlated to the number of sensors connected

to it. This comes from the correlation between the
number of connections and the burden of the routers.

• Sensors: Sensor failures can be caused by two reasons.
For one thing, the sensor may fail by itself. The failure
rate is once per 7 days in this model. For the other,
when no router is working properly, which indicates
the failure of the whole network device layer, the
sensor layer is deemed to fail as well, for there no
longer exist usable connections between the sensors
and the network in this situation.

B. Implementation

The PRISM model consists of three modules, one for the
controller cluster, one for the network device layer, one for
the sensor network. Part of the PRISM language description
of the controller cluster is shown below.

// Part of the Controller Cluster module
//1 = working, 0 = down
c1 : [0..1] init 1;
c2 : [0..1] init 1;
// failure of control device
[] c1>0 -> lambda_c1 : (c1’ = 0);
[] c2>0 -> lambda_c2 : (c2’ = 0);
[timeout1] comp & (c1 > 0) & (c2 > 0)

-> tau1 : true;
[timeout1] !comp & (c1 > 0) & (c2 > 0)

-> tau1 : true;
[timeout2] comp & (c1 > 0) & (c2 = 0)

-> tau2 : true;
[timeout2] !comp & (c1 > 0) & (c2 = 0)

-> tau2 : true;
[timeout3] comp & (c2 > 0) & (c1 = 0)

-> tau3 : true;
[timeout3] !comp & (c2 > 0) & (c1 = 0)

-> tau3 : true;
[timeout4] comp & (c2 = 0) & (c1 = 0)

-> tau4 : true;
[timeout4] !comp & (c2 = 0) & (c1 = 0)

-> tau4 : true;

The formulae defining the relationship between the other
two modules are shown below. When the number of devices

131

Figure 3. Architecture of the SDWSN.

connected to a certain router decreases, the failure rate of this
router is decreased correspondingly.

//Relationship between the Network Device Layer
//and the Host Device Layer
//number of devices that a virtual switch
//can receive
formula num_h1 = NUM_H - net1;
formula num_h2 = NUM_H - net2;
formula num_h3 = NUM_H - net3;
//more host devices connected, more probability
//of transient fault or failure
formula net_t_1 = 1/(24*60*60 -

floor (0.5 * net1));
formula net_f_1 = 1/(30*24*60*60 -

floor (0.5 * net1));
formula net_t_2 = 1/(24*60*60 -

floor (0.5 * net2));
formula net_f_2 = 1/(30*24*60*60 -

floor (0.5 * net2));
formula net_t_3 = 1/(24*60*60 -

floor (0.5 * net3));
formula net_f_3 = 1/(30*24*60*60 -

floor (0.5 * net3));

V. RESULTS

This section analyzes the results of model checking using
Prism on the formal model presented previously.

Figure 5 shows the failure probability of the two-controller
SDWSN (in contrast, the failure probability of a one-controller
SDWSN is shown in Figure 4). Failure rates of controllers vary
in order to study how different pairs of failure rates influence
the failure probability of the control plane. The following CSL
statement is used for model checking:

P=? [! "down" U<=T "fail_cont"]

From the model checking results, we have the following
findings.

Figure 4. Failure probability of one controller. The failure rate is once in 90
days.

• The controller plane 45/45 is much better than the
cluster 5/85.

• The controller plane 45/45, 30/60 and 20/70 are better
than the one-controller control plane, even if the
failure rate of the controller is once in 90 days.

• The controller plane 5/85 and 10/80 are worse than
the one-controller control plane.

From these findings, we can conclude that two controllers are
usually better than one controller. However, if one controller is
unreliable, the reliability of the control plane will not increase
significantly.

The failure probability of WSN layer in 10 hours is shown
in Figure 6. The following CSL statement is used for model
checking:

P=? [!"down" U<=T "fail_h"]

Here, ”fail h” represents the failure of WSN layer. The failure
probability in 10 day is shown in Figure 7. The two main

132

Figure 5. Failure probability of a pair of controllers. The failure rates of controllers are shown in the right.

Figure 6. Probability of sensor layer in 10 hours. The number of sensors
associated with each router is given in the right. For example, 5 sensors means
that each router is associated with 5 sensors.

Figure 7. Probability of sensor layer failure in 10 days.

influential factors are time and the total number of sensors in
the system.

• As time increases, the probability will increase.

• The probability drops as the total number of sensors
increases. The reason is that with more sensors, it is
less likely that all of them are down.

The result shows that increasing the number of sensors in the
WSN is one way of increasing the reliability.

Figure 8 illustrates the probability of each failure type
occurring first in an unlimited time. FC represents the failure
due to the controller cluster; FH refers to the failure of WSN;
and FN is the failure of routers. The result can be summarized
as follows.

Figure 8. Probability of each failure type occurring first.

• It shows that sensor failure is the dominant failure
type.

• With the number of sensors increase, FH decreases,
however FN and FC increase.

Thus, if the number of sensors is too large, the system
reliability may decrease, which is a trade-off.

VI. RELATED WORK

Many researchers have studied the reliability of SDNs.
Some researchers argued that the SDN controllers are not
reliable enough under fatal disasters due to the decoupled
control plane and data plane [3], [8]. As a result, SDN
controllers are not ready for massive productions. To address
such problem, [4], [7], [11] present several algorithms about
the placement of controllers in order to maximize the reliability
with multiple controllers. Apart from that, to detect bugs
inside an SDN controller platform, a real-time post-deployment
failure injection tool, named Chaos Monkey, is invented to
increase the reliability of SDN [2]. Furthermore, ResilientFlow,
An innovative approach is developed and applied to deal with
unexpected link failures under large-scale SDNs [10]. The
architecture of SDN controller is redesigned in [1] to be
resilient to potential SDN application failures.

VII. CONCLUSION

In this paper, a formal SDWSN model is constructed and its
properties are evaluated. CTMC is used to model the SDWSN;

133

and CSL is used for model checking SDWSN properties. In
addition, some interesting findings are described below.

Factors that influence SDWSN reliability in our model are
listed as follows: the number of central controllers, the failure
rate of controllers, the number of sensors, the failure rate of
routers and sensors.

One practical strategy of improving SDWSN reliability is
using more that one controllers. Also, it would be better if all
the controllers are relatively reliable. One unreliable controller
may not increase the system reliability significantly.

Another practical strategy is increasing the number of
sensor nodes. However, this may increase the failure rate
of controllers and routers. Thus, designers are suggested to
use a proper number of sensors which will not compromise
controllers and routers.

ACKNOWLEDGMENT

This work has been supported in part by the XJTLU
RDF140243, by the Natural Science Foundation of Jiangsu
Province under Grant BK20150376, and by the Suzhou
Science and Technology Development Plan under Grant
SYG201516.

REFERENCES

[1] Balakrishnan Chandrasekaran and Theophilus Benson. Tolerating sdn
application failures with legosdn. In Proceedings of the 13th ACM
Workshop on Hot Topics in Networks, page 22. ACM, 2014.

[2] Michael Alan Chang, Brendan Tschaen, Theophilus Benson, and Lau-
rent Vanbever. Chaos monkey: Increasing sdn reliability through
systematic network destruction.

[3] Xinjie Guan, Baek-Young Choi, and Sejun Song. Reliability and
scalability issues in software defined network frameworks. In Research
and Educational Experiment Workshop (GREE), 2013 Second GENI,
pages 102–103. IEEE, 2013.

[4] Yannan Hu, Wendong Wang, Xiangyang Gong, Xirong Que, and Shid-
uan Cheng. On reliability-optimized controller placement for software-
defined networks. Communications, China, 11(2):38–54, 2014.

[5] Marta Kwiatkowska, Gethin Norman, and David Parker. Stochastic
model checking. In Formal methods for performance evaluation, pages
220–270. Springer, 2007.

[6] Bruno Nunes, Manoel Mendonca, Xuan-Nam Nguyen, Katia Obraczka,
Thierry Turletti, et al. A survey of software-defined networking:
Past, present, and future of programmable networks. Communications
Surveys & Tutorials, IEEE, 16(3):1617–1634, 2014.

[7] Francisco Javier Ros and Pedro Miguel Ruiz. Five nines of southbound
reliability in software-defined networks. In Proceedings of the third
workshop on Hot topics in software defined networking, pages 31–36.
ACM, 2014.

[8] Alexander Shalimov, Dmitry Zuikov, Daria Zimarina, Vasily Pashkov,
and Ruslan Smeliansky. Advanced study of sdn/openflow controllers.
In Proceedings of the 9th Central & Eastern European Software
Engineering Conference in Russia, page 1. ACM, 2013.

[9] William Stallings. Software-defined networks and openflow. The
Internet Protocol Journal, 16(1):2–14, 2013.

[10] Takuma Watanabe, Takuya Omizo, Toyokazu Akiyama, and Katsuyoshi
Iida. Resilientflow: Deployments of distributed control channel main-
tenance modules to recover sdn from unexpected failures. In Design
of Reliable Communication Networks (DRCN), 2015 11th International
Conference on the, pages 211–218. IEEE, 2015.

[11] Peng Xiao, Wenyu Qu, Heng Qi, Zhiyang Li, and Yujie Xu. The sdn
controller placement problem for wan. In Communications in China
(ICCC), 2014 IEEE/CIC International Conference on, pages 220–224.
IEEE, 2014.

134

